
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

The Journal of Adhesion
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453635

A Comparison of Linear with Nonlinear Viscoelastic Solutions for Shear
Stress Concentration in Double Lap Joints
E. Sancaktara

a Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, New York,
U.S.A.

To cite this Article Sancaktar, E.(1991) 'A Comparison of Linear with Nonlinear Viscoelastic Solutions for Shear Stress
Concentration in Double Lap Joints', The Journal of Adhesion, 34: 1, 211 — 220
To link to this Article: DOI: 10.1080/00218469108026515
URL: http://dx.doi.org/10.1080/00218469108026515

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453635
http://dx.doi.org/10.1080/00218469108026515
http://www.informaworld.com/terms-and-conditions-of-access.pdf


J .  Adhesion, 1991, Vol. 34, pp. 211-220 
Reprints available directly from the publisher 
Photocopying permitted by license only 
0 1991 Gordon and Breach Science Publishers S.A. 
Printed in the United Kingdom 

A Comparison of Linear with Nonlinear 
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The correspondence principle based on the Maxwell model and a nonlinear viscoelastic solution 
involving an iterative scheme are used to describe the time dependent variation of the adhesive maximum 
shear stress in adhesively bonded double lap joints. The results indicate that if the correspondence 
principle is applied, the use of Maxwell chain is necessary to approximate the continuous change in the 
relaxation time and to coincide with the results calculated using the nonlinear viscoelastic theory. 

KEY WORDS Double lap joint; linear viscoelastic analysis; correspondence principle; nonlinear visco- 
elastic analysis; adhesive maximum shear stress; relaxation time. 

INTRODUCTION 

Elastic analysis of double lap joints reveals that the adhesive shear stresses vary 
along the overlap length (L) according to the relation’*’ 

T = - (P/4A)cosh(x/A)/sinh(L/2A) (1) 

where, 

A = (SdE/2G)”’ , 

E and G are the substrate (adherend) Young’s modulus and adhesive shear 
modulus, S and d are adhesive and adherend thicknesses respectively, and P is the 
axial load in the main plate (Fig. 1). 

It should be noted that a complete linear-elastic analysis is expected to result in 
comer singularities at the locations where the adhesive-adherend interface inter- 
sects the free edge.2 Due to the elastoplastic or viscoelastic-plastic nature of the 
adhesive material, however, such high levels of stresses are redistributed to levels 
encountered in usual engineering stress concentration  case^.^,^,^ Peel stresses are 
also expected to be created at the overlap edges of a double lap joint by moment 
forces compensating the absence of shear forces at the free ends of the (very thin) 
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212 E. SANCAKTAR 

FIGURE 1 Double Lap Joint Geometry. 

adhesive layers. This paper, however, focuses on shear stress concentration at the 
overlap edges and will not analyse peel stresses, as peel deformations are expected 
to be small due to the symmetric nature of the double lap specimen and also due to 
the assumption of rigid adherends. 

Equation (1) maximizes the adhesive shear stress at the overlap edges where 
x = 5 L/2. Apparently, only one needs to consider this maximum level of the shear 
stress for design purposes. The time dependent variation of the maximum stress is 
of critical importance to the designer as most adhesives are viscoelastic  polymer^.^ 

For nonlinear viscoelastic analysis the most widely used constitutive model 
involves a “power-law” compliance5 

D(t,7)=DO+D1 (t/e-&)”. (3) 
In Equation (3) Do is the instantaneous creep compliance, and D1 (transient creep 
compliance), n (power factor for time) and, 8 (strength of stress contribution in time 
shift) are material parameters which represent the nonlinear and time dependent 
material behavior. Typical values for epoxies2 which will be used in this paper are 
D1 = 1 x lo-’ (psi-set")-', 8 = 1.25 x psi-’, and n = 0.2. The instantaneous 
compliance can be assumed to be equal to the inverse of the elastic modulus for all 
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STRESS IN DOUBLE LAP JOINTS 213 

practical purposes. Note that Equation (3) incorporates a “reduced time” (t/aJ 
where the time reduction is accomplished by a stress-dependent shift factor, 

q=exp(  -87). (4) 

This paper will present solutions describing the time variation of the maximum 
adhesive shear stress in double lap joints using the linear correspondence principle, 
which provides a closed-form solution for the maximum adhesive shear stress, and 
also using a nonlinear compliance method which provides numerical results for 
the nonlinear partial differential equation governing the state of shear stress. The 
nonlinear solution involves a quasi-elastic method utilizing iteration by successive 
differentiation as described by Weitsman.’ Adhesive maximum shear stress values 
will be evaluated using both methods and the results of linear analysis will be 
matched to those of nonlinear analysis using an additional numerical procedure. 
This second numerical procedure involves the use of variable relaxation time which 
is changed as a function of time. The paper, therefore, illustrates the capability of 
obtaining accurate solutions using the correspondence principle if variable relax- 
ation time is used. 

The general form of the correspondence principle6.’ states that if the solution of an 
elastic problem is known, the Laplace transform of the solution to the corresponding 
linear viscoelastic problem may be found by replacing the elastic constants with 
their linear viscoelastic counterparts, and the actual loads by their Laplace trans- 
forms. This modified transform is inverted subsequently to obtain the solution in 
the time domain. It should be noted that for some cases Laplace transformation is 
not possible. Such cases occur when regions over which boundary conditions act 
are changing in the course of time. The case study presented in this paper which 
involves the double lap joint problem (Fig. l ) ,  however, does not fall into this 
category. 

ANALYTICAL CONSIDERATIONS 

Simplification of the Elastic Solution 

For common overlap geometries and adhesive-adherend materials, the hyperbolic 
part, cosh(x/A)/sinh(L/2A), of Equation (1) can be assumed to be equal to one at 
the overlap ends (x = L/2) and their close vicinity. In fact, for the material parame- 
ters: substrate modulus E, = 10 x lo6 psi, adhesive shear modulus, G, = 5 x lo5 psi 
and the geometrical parameters: adhesive thickness, 6 = 3 x in, adherend thick- 
ness, d=0.5 in, to be used in this paper, we get cosh(x/A)/sinh(L/2A) = 1.0005690 
for the adhesive layer location x = L/2 = 1/2 at the overlap edges. Note that this 
hyperbolic term progressively deviates from unity for the following conditions: 
shorter overlap lengths, L, larger values of the product 6dE,, and smaller values of 
the adhesive modulus, G,. With this assumption, simple substitution results in the 
ratio of the maximum stress, T , , , ~ ~ ,  to the average stress, T , , ~  in the form’ 

= [ L/( 26dE) ”*I( G) ”’ ( 5 )  
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214 E. SANCAKTAR 

where the average shear stress (per unit width) in the adhesive is given by 

TaVg = - Pf2WL (6) 
with w = adherend width = 1 for the present solution. The assumption of unity width 
for the adherends is consistent with the elastic plane strain solution (ie. strain, E = 0 
in the width, w, direction) utilized in this paper. It should be noted that the use of 
the plane strain condition for lap geometries is a well-accepted procedure routinely 
utilized by other researchers.*v9 The simple form of Equation (5) allows the applica- 
tion of the correspondence principle to account for the time effects. 

Linear Viscoelastic Solution 

Based on the correspondence principle, the general stress problem is the same for 
elastic and linear viscoelastic structures in the sense that three basic sets of equations 
must be satisfied. These equations represent equilibrium conditions, kinematic rela- 
tions and constitutive equations. The only difference between the two types of 
problems is that for viscoelastic structures Hooke's law is replaced by a linear visco- 
elastic constitutive equation of the form" 

= - - .  
. . .BijkrUkr -k Bijkr6kr + Uij = cij + CijkrLkr -k CijkrLkr -k . . . (7) 

where dots indicate time derivatives, Lij is the Lagrangian linear strain tensor and 
Ci,, Cijkr . . . , Bijkr . . . are coefficients. When the coefficients of Equation (7) are 
assumed to be constants and the derivatives of the displacements are small, then 
Equation (7) describes a linear viscoelastic material. Linear combinations of spring 
and dashpot models can be used to describe Equation (7); for example a series 
combination of a linear spring representing elastic modulus, E, and a dashpot repre- 
senting viscosity coefficient, p, describes the Maxwell body (Fig. 2) with the consti- 
tutive equation - - .  

BijkrUkr + uij = CijkrLkr. 

(p/E)u + u = pi. 

(8) 

(9) 

The one dimensional form of Equation (8) is 

Overstress versions of the Maxwell model have been used to describe the constitu- 
tive behavior of structural adhesives. 11*12~13 Such models include sliding elements in 
parallel with the dashpot and in series with the spring to represent overstress condi- 
tions: elastic limit stress and ultimate (or yield) stress, respectively, which mark 
constitutive behavior changes in the adhesive material through some failure 
mechanism. 

When one takes the Laplace transform of both sides of Equation (8), a linear 
stress-strain relation is obtained in the transform domain. In one dimension, such 
a relation can be expressed as 

- 
u = E*(s)Z , (10) 

where the exact form of the coefficient E*(s) depends on the mechanical spring- 
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STRESS IN DOUBLE LAP JOINTS 215 

dashpot model chosen; for example, for a Maxwell model consisting of a spring “E” 
and dashpot “p”: 

E*(s) = (sE)/[s + (E/p)]. (11) 
- 

Shear stresses ( T )  and strains (y) can be related in the transform domain in a 
manner similar to Equation (10): 

_ -  
T = G*(s)Y . (12) 

(13) 

Based on Maxwell model; the coefficient e*(s) can be expressed as 
- 
G*(s) = (sG)/[s + (G/ps)] 

where G is the elastic shear modulus and p, is the coefficient of viscosity in shear 
which is related to the coefficient of viscosity in tension, p,14 by 

Ps = (P)/[2(1 +.)I (14) 
whereu is the Poisson’s ratio. Note that Equation (14) assumes equivalent relaxation 
times in shear and tension, i.e. 

T = (ps/G) = ( p/E) (15) 
as suggested by Tob~lsky.’~ 

FIGURE 2 The Maxwell Model. 
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216 E. SANCAKTAR 

The correspondence principle can be applied to obtain the linear viscoelastic 
counterpart of Equation ( 5 )  in the following manner: If one assumes elastic adher- 
ends, the only elastic constant to be replaced in Equation (5) is G. In order to 
represent real structural adhesives and also to simplify the solution, the Maxwell 
model can be chosen to represent a viscoelastic constitutive equation. Therefore 
the G*(s) coefficient which replaces G in the transform is defined by Equation (13). 

The nonlinear viscoelastic solution mentioned earlier utilizes a creep compliance 
function (Equation 3) with four distinct material parameters. Such use of a creep 
compliance function facilitates displacement-type formulations based on shear-lag- 
type analysis. The nonlinear viscoelastic analysis presented in this paper, and 
applied earlier by Weitsman,2 involves such treatment. With linear analysis, 
however, we can directly apply the condition of stress relaxation at the stress 
concentration location in double lap joints. Indeed, numerical results published 
earlier by Weitsman2 were shown as space dependent shear stress curves plotted as 
functions of time and illustrated stress relaxation. The linear analysis presented here 
involves only two material parameters, Ga and p, which are combined in one explicit 
parameter, the relaxation time, T. It should be noted, however, that the eventual 
use of variable relaxation times also renders the originally linear method nonlinear 
as illustrated by Equation (23), which is obtained numerically. 

Perhaps the most significant difference between the two methods presented is the 
fact that the nonlinear analysis is based on a creep compliance and, consequently, 
the adhesive strain must increase constantly for relaxation to take place (at the 
overlap edges) while the applied load level is fixed. With the linear method, 
however, the level of initially applied strain is kept constant while the stress, and 
the applied load are allowed to relax. With this method having a constant level of 
2.04% shear strain (applied in present calculations) at the overlap edges does not 
mean that the creep process does not take place. In fact, continuous conversion of 
elastic strain (from the spring element) to plastic strain (in the dashpot element) 
tantamounts to a creep process except under fixed displacement conditions. 

In order to obtain the closed form adhesive maximum shear stress expression 
based on the linear correspondence principle the relaxation condition is described 
mathematically by 

y(t) = yoH(t) (16) 
where H(t) is the Heaviside unit step function and yo is the level of applied constant 
shear strain. Using 

7avg = Gyavg (17) 
and Equation (16), Equation (17) can be written in the transform domain as: 

Substitution of Equation (13) and inverse transformation results in: 

7x=uz(t) = {[Ly0(G)”]/(26dE)’/~} {e-(mT) 10(t/2T) (19) 
- (tm) e-(mT) [Io(t/2T) - Il(t/2T)]}. 
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STRESS IN DOUBLE LAP JOINTS 217 

where I. and I1 refer to the modified Bessel functions of the first kind of orders 0 
and 1 respectively. 

Nonlinear Viscoelastic Solution Based on Power-Law Creep Compliance 

In order to develop the nonlinear viscoelastic solution to the symmetrical double 
lap joint problem, Weitsman2 first applies a variational formulation to the linear 
elastic problem which yields the solution given by Equation (1). The same method 
is then extended to the nonlinear viscoelastic case by using the nonlinear compliance 
given by Equation (3) to describe the shear strain behavior of the adhesive mate- 
rials. As a result, the nonlinear partial differential equation 

is obtained. This equation is solved by using a numerical iterative scheme which 
involves successive differentiation of Equation (20) along with Taylor expansions 
of differentials in terms of higher differentials of the previous sub-interval along 
the space coordinate. This numerical technique is similar to Picard’s method for 
successive approximations. l6 

Iterative Method for Nonlinear Viscoelastic Solution 

The iterative method used to solve Equation (20) is similar to the method used by 
Weitsman.2 The first step in this method is successive differentiation of Equation 
(20) with respect to the space variable, x. The availability of first through fifth space 
derivatives of T(t,x) is assumed to provide sufficient accuracy for the numerical 
method. 

The next step involves expressing T~ and d.ri/dx by Taylor expansions with five 
terms assumed to provide sufficient accuracy, i. e., 

and 

T ’ ~ = T ’ ~ - , + A T ’ ~ ~ - ~ + .  . . +(1/4)A4.?-, 

The half overlap length 01xS(L/2) is divided into N equal sub-intervals of length 
A = L/2N with N = 500. For iteration purposes, each space iteration node is identi- 
fied as xi = iA(i = 1,2, . . . ,N) and the corresponding shear stress to be calculated as 

The iteration process starts with initial guess values for T ’ ~  to be substituted along 
with the boundary condition, ~ ( 0 )  = 76’) = 0 into Equation (20) to compute T ” ~ .  T ” ‘ ~ ,  

7;” and 70” are then calculated using the derivatives of Equation (20).2 These 
computed values can now be substituted into equations (21) and (22) to calculate 
T~ and T ‘ ~ .  In this fashion, the iteration scheme proceeds forward until T~ and T~~ 

values are obtained. Accuracy of the calculated T~ values is checked by using the 
equilibrium condition and an error value is calculated. 

Iteration proceeds with new guess values for T’,, until the calculated error is less 

7( t ,Xi) = Ti.  
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6 =0.003 in 
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Time (sec) 
FIGURE 3 Variation of Adhesive Shear Stress at the Overlap Edges of Double Lap Joints as Predicted 
by Linear and Nonlinear Viscoelastic Analyses. 

than The choice of guess values for [ T ‘ ~ ] ~  is determined using an optimal selec- 
tion method which can be summarized as follows. Initially, based on early numerical 
trials, the range of guess values is chosen to be between lo-@ to 2 X lo3 and the 
midrange value of 1 x 103 is used as the first guess. If the resulting error value is 
positive a new [ T ‘ ~ ] ~ + ~  value equal to 5 x lo2 and corresponding to midrange between 
lom and 1 x 103 is tried. If the initial error is negative, however, [ T ’ ~ ] ~ + ~  = 1.5 x 103 
is used as the next guess. This narrowing selection of midrange values continues 
until the accuracy criterion errorllO-’ is met. 

RESULTS AND CONCLUSIONS 

By using typical material properties mentioned earlier for the linear elastic substrate 
(aluminum) and the viscoelastic adhesive (epoxy), Equations (19) and (20) can be 
solved as described above to yield the maximum adhesive shear stress values as 
functions of time. Figure 3 shows comparison of these results. It can be seen that 
if the correspondence principle is applied, the use of the Maxwell chain is necessary 
to approximate the continuous change in the relaxation time “T” and to coincide 
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with the results calculated using the nonlinear viscoelastic theory. For this purpose 
numerical iteration can be performed to determine the relaxation time values which 
will allow matching the results of Equation (19) with those of Equation (20). Results 
of such analysis is shown in Figure 4. The time dependent equation for the relaxation 
time fitted to match the results of nonlinear viscoelastic analysis is obtained as 

T(sec) = 9.7t0.9055 + 4.32t0.6100. (23) 
Note that the numerical optimization for Figure 4 was performed using time values 
equal to or larger than 1 second. Based on Equation (23) a relaxation time value of 
T=0.4955 sec is predicted for very short duration o f t  =0.013 sec. Examination of 
Figure 3 reveals that for this relaxation time value the closed form equation (19) 
predicts invalid stress levels at short times (i.e. less than 10 sec). This is a limitation 
of Equation (19) due to the use of Heaviside step function in representing the 
relaxation condition and the curve corresponding to T=  0.5 sec has been included 
in Figure 4 to illustrate this limitation. This limitation is asymptotic in nature and 
is restricted to very short relaxation time values (i .e.  T<0.5 sec). It should be noted 
that this limitation of the closed form solution does not affect its accurate application 
to predict variable relaxation time values (T) with higher magnitudes and as func- 

h 
.L. 
v) a 
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X 
cp 
f c- 

1 0000 - 

9000.- 

8500- ANALYSIS WITH VARIABLE 
RELAXATION T I M E I T  
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7500- 

7000- 

6500- 

60007 ! ! !4 ! ! ! ! ! ! ! ! !  ! ! !!!!!!! ! ! ! !  
i 10 (00 1000 I oE+4 1 .OE+5 

Time (sec) 
+6 

FIGURE 4 Variation of Maximum Adhesive Shear Stress in Double Lap Joints Based on Nonlinear 
Viscoelastic Analysis and Linear Viscoelastic Analysis with Variable Relaxation Time. 
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220 E. SANCAKTAR 

tions of time (t) to obtain a functional form in consort with the nonlinear solution. 
Prediction difficulties of this sort for very short durations exist for numerical solu- 
tions also and are usually the reason for use of time values equal or larger than one 
second. 

In conclusion, Figure 4 reveals the capability of obtaining accurate predictions 
with the use of the correspondence principle under fixed displacement conditions 
when variable relaxation time is used. It is necessary, however, to determine how 
the relaxation time varies by using experimental results. 
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